焼成時間を調節して充填率を変化させ た *ex-situ*法MgB₂バルク超伝導体の磁 東ピンニング特性

木内研究室

廣川 愛生

平成25年2月25日 電子情報工学科

目 次

第1章	序論	1
1.1	はじめに	1
1.2	磁束ピンニング	4
1.3	磁束クリープ・フローモデル	5
	1.3.1 磁束クリープ	5
	1.3.2 磁束フロー	10
	1.3.3 ピン・ポテンシャル	11
	1.3.4 磁束クリープ・フローモデル	15
1.4	不可逆磁界	17
1.5	MgB_2	18
1.6	フラックスジャンプ	21
1.7	本研究の目的	22
笙り音	宝路	23
第2章	実験	23
第2章 2.1	実験 試料	23 23
第2章 2.1 2.2	実験 試料 実験方法	232325
第2章 2.1 2.2 2.3	実験 試料 実験方法 直流磁化法による J _c の評価	 23 23 25 25
第2章 2.1 2.2 2.3 第3章	 実験 試料 実験方法 直流磁化法による J_cの評価 結果及び検討 	 23 23 25 25 27
第2章 2.1 2.2 2.3 第3章 3.1	実験 試料 実験方法 直流磁化法による J _c の評価 結果及び検討 J _c -B 特性	 23 23 25 25 27 27
第2章 2.1 2.2 2.3 第3章 3.1 3.2	実験 試料 実験方法 方法 直流磁化法による Jc の評価 加速 結果及び検討 Jc-B 特性 不可逆磁界 Bi の充填率依存性	 23 23 25 25 27 27 30
第2章 2.1 2.2 2.3 第3章 3.1 3.2 3.3	実験 試料 実験方法 直流磁化法による Jc の評価 直流磁化法による Jc の評価 A 結果及び検討 Jc-B 特性 不可逆磁界 Bi の充填率依存性 ビン力密度のスケール則	 23 25 25 27 30 31
第2章 2.1 2.2 2.3 第3章 3.1 3.2 3.3 3.4	実験 試料	 23 25 25 27 27 30 31 38
第2章 2.1 2.2 2.3 第3章 3.1 3.2 3.3 3.4	実験 試料	 23 25 25 27 27 30 31 38
第2章 2.1 2.2 2.3 第3章 3.1 3.2 3.3 3.4 第4章	実験 試料	 23 25 25 27 27 30 31 38 41

4.2	今後の課題			•									•	4	41
	1 2 4 10 -														

表目次

2.1 2.2	試料の諸元 試料サイズ	$\frac{24}{24}$
3.1	ピンニングパラメータ	39
3.2	各試料におけるコネクティビティKを考慮したピン力	
	密度の最頻値	40

図目次

1.1	磁界中の超伝導体に通電したときの概略図	4
1.2	磁束線のオーダーパラメータと磁束密度の構造	6
1.3	磁束バンドルの位置とエネルギーの関係	7
1.4	磁束フローのエネルギー状態の概念図	10
1.5	磁束線が平衡位置から変位したときの (a) ピン力密度	
	および (b) ピンニング・エネルギー密度の変化....	12
1.6	ピンニング相関距離 L と超伝導体の厚さ d の関係	14
1.7	磁束密度-温度平面上の不可逆曲線	18
1.8	$MgB_2の結晶構造$	19
2.1	高温焼成による結晶粒の成長過程	24
2.2	4 方向から磁束線が侵入した場合の流れ方と電流が流	
	れる微小幅 dxの帯に囲まれた領域	26
3.1	各試料の J _c -B 特性	28
3.2	各温度における J _c -B 特性	29
3.3	20 K における <i>B</i> _i の充填率依存性	30
3.4	各試料における $(J_{ m c}B^{1-x})^{1/2}$ - B 特性 $(x=0.4)$	34
3.5	各試料におけるピン力密度のスケール則	35
3.6	$48 h \mathcal{O} F_{\mathrm{p}} \mathcal{O}$ 規格化磁界 $b = B/B_{\mathrm{i}}$ に対する依存性	36
3.7	各試料の $B_{i} - T$ 特性	37
3.8	$3h$ のピン力密度の最大値 F_{pmax} と不可逆磁界 B_i の関係	37
3.9	各試料における $J_{ m c}$ - B 特性の実験値と理論値の比較	40

第1章 序論

1.1 はじめに

超伝導体とは、ある温度・磁界以下の状態において、抵抗なしで電 流を流すことができ、完全反磁性を示す超伝導状態になる物質であ る。超伝導体の発見は1911年のことであり、発見から未だ100年程 度しか経過していない。1908年にオランダの Kamerlingh-Onnes が ヘリウムの液化に成功し、物質を極低温まで冷却することが可能に なった。これに伴い、当時論争の的となっていた絶対零度下におけ る金属の抵抗率の変化が調査された。このとき水銀が当時において も比較的高純度のものが得られたため、水銀の抵抗率の変化が測定 された。その結果は驚くべきものであり、4 K 近傍において抵抗率が 測定できなくなるほど小さくなった。Kamerlingh-Onnesはこれが水 銀が新たな状態へと遷移したために引き起こされたものだと気づき、 これを超伝導状態と名づけた。これより、超伝導状態に遷移する現 象を超伝導と呼び、ある温度以下(この温度を臨界温度T_cという)で 超伝導現象を示す物体を超伝導体と呼ぶようになった。水銀におけ る超伝導現象の発見後、純粋な金属だけでなく化合物や合金におい ても超伝導物質が発見され、超伝導物質が数多く発見されるに伴い Tcも徐々に上昇していった。

超伝導体の発見が続く中、超伝導物質がもつ性質についても研究が 行われた。超伝導状態における特徴的な性質の1つに、抵抗なしで電 流を流せる完全導電性があるが、もう一つの特殊な性質として完全 反磁性がある。これは1933年に Meissner と Ochsenfeld によって発見 され、マイスナー効果と呼ばれている。この効果により、超伝導体に 対して外部から磁界を印加しても、遮蔽電流により超伝導体内部の 磁界は打ち消され、排除される。完全導体と超伝導体の相違点はここ にあり、常伝導状態において磁界を内部に印加してから超伝導状態 にすると、遮蔽電流が流れて内部の磁界が打ち消される。また、超伝 導現象の発見時からその発現機構についても調査されており、1935 年に London 兄弟による London 理論、1950年に Ginzburg と Landau による Ginzburg-Landau 理論が発表された。しかし超伝導体のメカ ニズムに関する本質的な理解は長らく与えられなかった。1957年に Bardeen、Cooper、Scrifferらがこの問題を解く理論を提出し、これ により超伝導の発現機構が明らかにされた。この理論は3人の名前 より BCS 理論と呼ばれている。この理論によると、T_c は 30 K 程度 が限界であると予想されていた。しかし1986年にBednorzとMüller により T_{c} が30Kを超える銅酸化物超伝導体LaBaCuO₄が発見され、 その後液体窒素温度 (77.3 K) を大きく超える T_c を持つ YBa₂Cu₃O₇ やBiSrCaCu₂O₉などの酸化物超伝導体が近年発見された。これらは 高温超伝導体とも呼ばれ、その高いT_cから超伝導状態にするための 冷却コストの削減が見込めるために応用化へ向けて大きな期待が寄 せられている。しかし、今日においても高温超伝導体は実用化には 多くの課題が残っており、更なる特性の改善が求められている。

次に、超伝導体の性質について述べる。超伝導体は抵抗なしで電流 を流せるため、超伝導体が発見された当時、この性質を利用して大 電流を通電し強力な電磁石を作製しようという試みがあったが、失 敗に終わっている。これは超伝導状態がある磁界以上において破れ てしまい、常伝導状態になってしまうためである。これより、超伝 導現象は、超伝導体がある温度・ある磁界以下の範囲においてのみ 発現することが分かった。そのときの温度と磁界はそれぞれ臨界温 度*T*_c、臨界磁界*B*_cと呼ばれており、超伝導体の特性を議論する上で 重要な物理量となっている。超伝導体はその磁気的な振る舞いの違 いから、第1種超伝導体と第2種超伝導体の2つに分類される。第1 種超伝導体は、臨界磁界*B*_cまではマイスナー効果を示し*B*_cを超え ると常伝導状態となる。それに対して、第2種超伝導体は下部臨界 磁界*B*_{c1}と呼ばれる磁界までは第1種超伝導体と同様にマイスナー効 果を示すが、B_{c1}を超えると超伝導体内部に磁束の侵入を許しながら 超伝導状態を維持する。そして、上部臨界磁界 B_{c2}と呼ばれるある磁 界を超えると常伝導状態に遷移する。一般的に、第1種超伝導体の 臨界磁界 B_cと第2種超伝導体の上部臨界磁界 B_{c2}を比較すると、B_{c2} の方が非常に高いため、第2種超伝導体の方が応用に適している。

超伝導体が内部に磁束の侵入を許している状態を混合状態と呼ぶ が、この状態のときに電流を流した場合を考える。侵入した磁束線 は電流の影響により Lorentz 力を受け、移動しようとする。超伝導 体の内部に流れる電流の密度を J、侵入した磁束線の磁束密度を Bとすると、このときの Lorentz 力 F_L は $F_L = J \times B$ と表すことができ る。 F_L による駆動力を受けた磁束線が速度vで移動した場合、誘導 起電力によって超伝導体内部に $E = B \times v$ の電界が発生し、電気抵 抗が生じる。実際には超伝導体の抵抗はゼロなので、Lorentz 力を打 ち消す力が働いていると考えられる。この力をピンニング力といい、 単位体積当たりのピンニング力をピン力密度 F_p と呼ぶ。このとき、 $|J \times B| < F_p$ の範囲では電界は発生しない。従って、電気抵抗なしに 流せる最大の電流密度は $J_c = F_p/B$ と表すことができ、これを臨界 電流密度と呼ぶ。このことから J_c を増加させるには F_p を増加させれ ばよいことがわかる。 J_c は T_c 、 B_{c2} と同様に応用化において非常に 重要な物理量であるといえる。

酸化物超伝導体の発見以来、Y系などの酸化物超伝導体やNbTiを 中心に超伝導応用の研究が行われていたが、2001年にAkimitsuらに より MgB₂が発見され注目を浴びた。MgB₂の臨界温度は約 39 Kで あり、それまで発見されていた金属超伝導体の*T*cを大きく更新した。 20 K程度での応用が可能になれば液体水素や冷凍機で低負荷で運用 できるために冷却コストの低減が期待できる。また、酸化物超伝導 体では酸化物であるが故に線材化の際に様々な困難が伴うが、金属 超伝導体である MgB₂は展性に優れているために加工が容易であり、 さらに原材料も安価なことから実用化に向けた研究が活発に行われ ている。今現在 MgB₂はさらなる特性改善にむけて様々な試みがさ れている。そうした中、成果のあったものを中心に改善のメカニズ

図 1.1: 磁界中の超伝導体に通電したときの概略図

ムを探り特性を調べることが重要である。

1.2 磁束ピンニング

第2種超伝導体の混合状態において、損失無しに電流を流すため にはピンニング力が必要である事は述べたが、転位、常伝導析出物、 空隙、結晶粒界面などあらゆる欠陥や不均一物質がピンニング力を もたらすことが知られている。これらをピンニングセンターといい、 磁束線はピンニングセンターにピン止めされる。また、混合状態時 に超伝導体に侵入する磁束線を量子化磁束という。

GL 理論によると、超伝導体の秩序を表す物理量として複素数の オーダーパラメータ Ψ を導入し、 $|\Psi|^2$ は超伝導電子密度を与えるも のとする。従って量子化磁束とオーダーパラメータの構造は図1.2の ようになるが、量子化磁束の中心部分はほぼ常伝導状態($|\Psi| \simeq 0$)で、 そのサイズはコヒーレンス長 ξ 程度であることが知られており、そ の部分を常伝導核と呼ぶ。図1.2とピンニングセンターの空間的な構 造とが重なって、磁束線が変位するとき、エネルギーの変化を感じ る。これをピンニング相互作用といい、磁束線はエネルギーの勾配 に対応したピンニング力を受ける。ピンニング機構はその寄与する エネルギーによっていくつかの分類に分けられるが、超伝導状態と 常伝導状態のエネルギーの差、いわゆる凝縮エネルギーの変化によ るピンニング相互作用が一般的である。

MgB₂においては実際に結晶粒径とピンニング特性の定量的な評価がされ、MgB₂における支配的なピンニングセンターが結晶粒界であることが明らかとなったが、^[1]結晶粒界によるピンニングも凝縮エネルギー相互作用によるものである。

ところで電子の平均自由行程を1とおくと、その値のある範囲で

$$\frac{1}{\xi} = \frac{1}{\xi_0} + \frac{1}{l} \tag{1.1}$$

のような関係が成り立つことが知られている。ここで ξ_0 はBCS 理論 によるコヒーレンス長を示す。 ξ_0 は定数なので、電子の平均自由行 程が減少すれば ξ が減少することが分かる。ところで結晶界面付近 では電子散乱が起こると考えられている。結晶界面が電子に対して 不規則なポテンシャルの変化を与え、電子散乱が発生する。それに 伴い電子の平均自由行程*l*は減少し、従って結晶界面付近ではコヒー レンス長 ξ が減少すると考えられる。ここで量子化磁束が結晶界面 付近を通過する場合を考える。量子化磁束が結晶界面付近に近づく と ξ の低下により常伝導核のエネルギーが減少する。このために界 面では引力的なピンニング相互作用が働く。以上のような機構を結 晶界面ピンニングと呼ぶ。 ξ の変化率がエネルギーの変化率を与えそ れがピンニング力となるため、 ξ の変化率が大きいほど強いピンニン グとなる。

図 1.2: 磁束線のオーダーパラメータと磁束密度の構造

1.3 磁束クリープ・フローモデル

1.3.1 磁束クリープ

理想的な第2種超伝導体において、ピンニング機構による超伝導 電流は、外部環境が一定であれば時間によって変化しないと考えら れる。しかし現実には、超伝導電流は時間が経過するに連れて対数 的に減衰する。即ち、ピンニング機構による超伝導電流は、時間に よって減衰しない永久電流ではない。これは、磁束線がピンニング センターに捕らえられた状態が準平衡状態であり、真の平衡状態で はないためである。そのため、熱的擾乱の影響で磁束線がピンニン グセンターから外れて運動し、真の平衡状態となるために遮蔽電流 の減衰が発生する。このような、磁束線が熱揺動によりピンニング センターから外れて運動する現象を磁束クリープと呼ぶ。特に、動 作温度の高い酸化物超伝導体では、酸化物特有の結晶構造や弱いピ ンニングのために、この磁束クリープの影響を顕著に受けることが 知られている^[2]が、金属系超伝導体である MgB₂ も 20 K 近傍での利 用が期待されることから、その影響を顕著に受けることが予想され る。磁束クリープにおける磁束線の運動は、後述する磁束フローの ように連続的ではなく断続的なもので、磁束バンドルと呼ばれる離 散的な集団で移動する。

図 1.3: 磁東バンドルの位置とエネルギーの関係

ここで、電流が流れている状態での一つの磁東バンドルについて考 える。このとき、磁東バンドルの位置とエネルギーの関係は図1.3の ようになる。図1.3中において、磁東バンドルは右向きのLorentz力 を受けていると仮定している。また、磁東バンドルはピンニングセ ンターに捕らえられた状態であり、エネルギーが右下がりになって いるのはLorentz力による仕事を考慮しているためである。従って、 エネルギーの勾配はLorentz力 $F_L = J \times B$ に比例する。ピンニング センターに捕まった磁東バンドルが熱運動によってエネルギー・バ リアを越えたときに磁束クリープが発生する。磁束バンドルがこの エネルギー・バリアを越えて動き出す確率はArrheniusの式

$$\exp\left(-\frac{U}{k_{\rm B}T}\right) \tag{1.2}$$

で表される。このとき、エネルギー・バリアUは活性化エネルギー ともいい、 $k_{\rm B}$ はBoltzmann 定数、Tは絶対温度である。また、Uは電流によって変化し、電流がゼロになったときのUを U_0 として、 これをピン・ポテンシャルという。

一回の磁束バンドルのクリープで移動する距離 a は次にピン止めさ

れる位置であり、磁束バンドルのエネルギー状態はその磁束線格子間 隔 a_f だけの変位に対して周期的になると考えられるので、aは a_f 程 度となる。ピン・ポテンシャル内の振動周波数を ν_0 とするとLorentz 力方向の平均速度vは(1.2)式を用いて

$$v = a_{\rm f} \nu_0 \exp\left(-\frac{U}{k_{\rm B}T}\right) \tag{1.3}$$

となる。 クリープの際の磁束バンドルの振動周波数 v0 は

$$\nu_0 = \frac{\zeta \rho_{\rm f} J_{\rm c0}}{2\pi a_{\rm f} B} \tag{1.4}$$

で与えられる。^[3] ここで ζ はピンの種類に依存する定数であり、 点 状ピンの場合は $\zeta \simeq 2\pi$ 、 大きな非超伝導粒子の場合は $\zeta = 4$ である ことが知られている。なお、本研究の解析においては、ピンの形状 は点状ピンを仮定しているため $\zeta \simeq 2\pi$ を用いる。また、 $\rho_{\rm f}$ はフロー 比抵抗であり、 $J_{\rm c0}$ は後に説明する仮想的な臨界電流密度である。ま た、 磁束線の移動によって生じる電界 *E* は

$$E = Bv \tag{1.5}$$

で与えられる。したがって一つの磁束バンドルが磁束線格子間隔 a_f だけの変位で生じる電界はLorentz 力と逆方向の速度も考慮して

$$E = Ba_{\rm f}\nu_0 \left[\exp\left(-\frac{U}{k_{\rm B}T}\right) - \exp\left(-\frac{U'}{k_{\rm B}T}\right) \right]$$
(1.6)

となる。 ここでU'はLorentz 力と反対方向の活性化エネルギーである。一般的には、 磁束バンドル中心の位置 x に対するエネルギーの 変化は、図 1.3 のようなポテンシャルで近似的に与えられる。 この ポテンシャルを

$$F(x) = \frac{U_0}{2}\sin(kx) - fx$$
 (1.7)

のように正弦的なものと仮定する。ここで、 $U_0/2$ はポテンシャルの 振幅、 $k = 2\pi/a_f$ は波数、Vは磁束バンドルの体積として、f = JBVは磁束バンドルに働くLorentz力である。磁束バンドルが平衡位置に あるときを $x = -x_0$ とすると、 $x = x_0$ のときのエネルギーが極大となる。 つまり、それぞれの位置でのエネルギー変化はゼロになるので、F'(x)は0となる。 これより

$$x_0 = \frac{a_{\rm f}}{2\pi} \cos^{-1}\left(\frac{fa_{\rm f}}{U_0\pi}\right) \tag{1.8}$$

が求まる。 図 1.3 からエネルギー・バリア U は $U = F(x_0) - F(-x_0)$ で与えられるので

$$U = U_0 \sin\left[\cos^{-1}\left(\frac{fa_{\rm f}}{U_0\pi}\right)\right] - \frac{fa_{\rm f}}{\pi}\cos^{-1}\left(\frac{fa_{\rm f}}{U_0\pi}\right)$$
$$= U_0 \left[\left\{1 - \left(\frac{2f}{U_0k}\right)^2\right\}^{\frac{1}{2}} - \frac{2f}{U_0k}\cos^{-1}\left(\frac{2f}{U_0k}\right)\right]$$
(1.9)

と表される。ただし、ここで $\sin(\cos^{-1}(x)) = \sqrt{1-x^2}$ を用いた。もし熱振動がなければ、U = 0となる理想的な臨界状態が達成されるはずである。このためには、 $2f/U_0k = 2J_{c0}BV/U_0k = 1$ とならなければならない。このとき電流密度*J*が磁束クリープの影響がない仮想的な臨界電流密度*J*_{c0}となることから一般に

$$\left(\frac{2f}{U_0k}\right) = \frac{J}{J_{c0}} \equiv j \tag{1.10}$$

の関係が得られる。 *j* は規格化電流密度であり、 これを用いて (1.9) 式は

$$U(j) = U_0 \left[(1 - j^2)^{1/2} - j \cos^{-1} j \right]$$
(1.11)

となる。 また、 jが十分小さいときは $k = 2\pi/a_{\rm f}$ 及び (1.10) 式より

$$U'(j) \simeq U + fa_{\rm f} = U + \pi U_0 j$$
 (1.12)

となる。この関係を用いて磁束クリープによる発生する電界(1.6)式 を整理すると

$$E = Ba_{\rm f}\nu_0 \exp\left[-\frac{U(j)}{k_{\rm B}T}\right] \left[1 - \exp\left(-\frac{\pi U_0 j}{k_{\rm B}T}\right)\right]$$
(1.13)

のように求まる。

1.3.2 磁束フロー

磁東クリープ状態からさらに電流を増加させると、 Lorentz 力が ピンニング力とつり合うときがくる。このときの状態が臨界状態 (図 1.4(a)) であり、図1.3の活性化エネルギーUが0となる。さらに電流 が大きくなると、すべての磁束線が連続的に運動している状態にな る。これを磁束フローという。 図1.4(b) に磁束フローのエネルギー 状態を示す。このとき電流密度は磁束クリープの影響がない仮想的 な臨界電流密度 J_{c0} を超えている。

図 1.4: 磁束フローのエネルギー状態の概念図

超伝導体に電流が流れていて、外部磁界が加わっているとき単位 体積の磁束線に働くLorentz力は $J \times B$ で与えられる。一方、磁束 線がこの力で超伝導体内を動こうとすると磁束線は逆向きの力(ピン 力密度)を受ける。Lorentz力の方向の単位ベクトルを $\delta = v/|v|$ と すると、静的釣り合いが取れる場合、つまり $J < J_{c0}($ 磁束クリープ 状態)の場合は釣り合いの式は

$$\boldsymbol{J} \times \boldsymbol{B} - \boldsymbol{\delta} F_{\rm p} = 0 \tag{1.14}$$

となる。ここで F_p はピンニング力の強さ(ピン力密度)を表す。 $|J| = J_{c0}$ となる(臨界状態)とき Lorentz 力と F_p は釣り合うので、 $F_p = J_{c0}B$ の関係が得られる。

一方、 $J > J_{c0}(フロー状態)$ となると粘性力が働き、それを考慮 した釣り合いの式は

$$\boldsymbol{J} \times \boldsymbol{B} - \boldsymbol{\delta} F_{\rm p} - \frac{|\boldsymbol{B}|}{\phi_0} \eta \boldsymbol{v} = 0 \qquad (1.15)$$

となる。 ここで ϕ_0 は量子化磁束であり、 η は粘性係数である。これ に $J_{c0} = F_p/B$ 及び (1.5) 式の関係を用いて J について解くと

$$J = J_{\rm c0} + \frac{E}{\rho_{\rm f}} \tag{1.16}$$

となる。 ここで $\rho_{\rm f} = B\phi_0/\eta$ はフロー比抵抗である。 (1.16) 式を *E* について整理すると、 磁束フローにより発生する電界が

$$E = \rho_{\rm f}(J - J_{\rm c0}) \tag{1.17}$$

のように求まる。

1.3.3 ピン・ポテンシャル

ここでは磁束クリープ現象において最も重要なパラメータである ピン・ポテンシャル U_0 を理論的に見積もる。 ピン・ポテンシャルは 磁束線の単位体積当たりの平均化したピン・ポテンシャル \hat{U}_0 と磁束 バンドルの体積Vの積で表され、

$$U_0 = \hat{U}_0 V \tag{1.18}$$

となる。磁束線の単位体積当たりに平均化したピン・ポテンシャル \hat{U}_0 はLabuschパラメータ $\alpha_{\rm L}$ と相互作用距離 $d_{\rm i}$ を用いて

$$\hat{U}_0 = \frac{\alpha_{\rm L} d_{\rm i}^2}{2} \tag{1.19}$$

図 1.5: 磁束線が平衡位置から変位したときの (a) ピン力密度および (b) ピンニン グ・エネルギー密度の変化

と表せる。ところで相互作用距離 *d*_i は磁束線格子間距離 *a*_f(図1.3) と 定数 ζ を用いて

$$d_{\rm i} = \frac{a_{\rm f}}{\zeta} \tag{1.20}$$

と表すことができる。磁束線格子間距離 a_f は、 ϕ_0 を量子化磁束とすると

$$a_{\rm f} = \left(\frac{2\phi_0}{\sqrt{3}B}\right)^{1/2} \tag{1.21}$$

で与えられる。また、 α_L および d_i は磁束クリープがないときの仮 想的な臨界電流密度 J_{c0} と

$$J_{\rm c0}B = \alpha_{\rm L}d_{\rm i} \tag{1.22}$$

の関係がある。 こうした変位によるピン力密度およびピンニング・ エネルギー密度の変化を図1.5 に示す。以上から

$$U_0 = \frac{1}{2\zeta} J_{\rm c0} B a_{\rm f} V \tag{1.23}$$

が得られる。

一方、磁東バンドルの形状は図1.6のように表される。磁東バンドルはコヒーレントに動く磁束線の集団であり、ある空間的範囲内では並進的秩序が保たれていると考えられる。したがって、図1.6(a)のように試料サイズが磁束線格子の弾性相関距離に比べて大きい場合、磁束バンドルサイズはその相関距離で与えられると考えることができる。ところで磁束線の縦方向(長さ方向)の弾性相関距離L及び横方向の弾性相関距離Rはそれぞれ以下の様に表される。

$$L = \left(\frac{C_{44}}{\alpha_{\rm L}}\right)^{1/2} \tag{1.24}$$

$$R = \left(\frac{C_{66}}{\alpha_{\rm L}}\right)^{1/2} \tag{1.25}$$

ここで、 $C_{44} = B^2/\mu_0$ は曲げ歪みに対する磁束線格子の弾性定数で あり、 C_{66} は剪断の歪みに対する磁束線格子の弾性定数であり、 磁 束線格子の状態に大きく依存する (後に述べる)。また、 α_L は (1.20) 式と (1.22) 式から

$$\alpha_{\rm L} = \frac{\zeta J_{\rm c0} B}{a_{\rm f}} \tag{1.26}$$

と表される。 よって (1.24) 式は

$$L = \left(\frac{C_{44}}{\alpha_{\rm L}}\right)^{1/2} = \left(\frac{Ba_{\rm f}}{\zeta\mu_0 J_{\rm c0}}\right)^{1/2}$$
(1.27)

となる。縦方向の磁束バンドルサイズは図1.6に示すように超伝導体 の厚さ*d*と*L*の大小関係で異なり、*d*が*L*より大きい場合は*L*とな り、*d*が*L*より小さい場合は*d*となる。

横方向の磁東バンドルのサイズ R は超伝導体のピンが極端に弱い 時を除いて磁束線格子間隔 a_f 程度の長さからその数倍程度であると 予想される。ここで、

$$R = ga_{\rm f} \tag{1.28}$$

のように表す。したがって、 g²は磁束バンドル内の磁束線の本数 となる。前に述べた C₆₆は磁束線格子の状態に強く依存し変化する

図 1.6: ピンニング相関距離 L と超伝導体の厚さ d の関係

ため決定論的には求まらないので、 g^2 の値も決定論的には求まらない。しかし、熱力学的な方法を用いて「 g^2 の値は磁束クリープの下では臨界電流密度が最大になるように決定される」という仮定が提出された。^[4]これによると、 g^2 の具体的な結果は

$$g^{2} = g_{\rm e}^{2} \left[\frac{5k_{\rm B}T}{2U_{\rm e}} \ln\left(\frac{Ba_{\rm f}\nu_{0}}{E_{\rm c}}\right) \right]^{4/3}$$
(1.29)

となる。 このとき、 g_e^2 は完全な3次元的な三角格子の場合の g^2 であり、 (1.30) 式で与えられる。 U_e は後に示される U_0 の式において $g = g_e$ としたときのピンポテンシャルエネルギーであり、 ν_0 は (1.4) 式を参照した。 E_c は電界基準で、 電界 E がこの値に達した時の Jを 臨界電流密度とする。

$$g_{\rm e}^2 = \frac{C_{66}^0}{\zeta J_{c0} B a_{\rm f}} \tag{1.30}$$

ここで C_{66}^0 は完全な3次元的な三角格子の場合の C_{66} の最大値であり 次式で与えられる。

$$C_{66}^{0} = \frac{B_{\rm c}^{2}B}{4\mu_{0}B_{\rm c2}} \left(1 - \frac{B}{B_{\rm c2}}\right)^{2}$$
(1.31)

超伝導体の厚さdがLよりも大きい場合磁束バンドルの体積は $V = R^2L$ となり、このときのピン・ポテンシャルは磁束クリープがないと

仮定したときの仮想的な臨界電流密度 J_{c0} を用いて (1.21) 式、 (1.23) 式、 (1.27) 式、 (1.28) 式から最終的に

$$U_0 = \frac{1}{2} \cdot \left(\frac{2}{\sqrt{3}}\right)^{\frac{7}{4}} \cdot \left(\frac{2\phi_0^7}{\mu_0^2}\right)^{\frac{1}{4}} \cdot \frac{g^2 J_{c0}^{\frac{1}{2}}}{\zeta^{\frac{3}{2}} B^{\frac{1}{4}}}$$
(1.32)

となる。 ここで ϕ_0 は量子化磁束で 2.0679×10^{-15} Wb であり、 $(1/2)(2/\sqrt{3})^{7/4}(\phi_0^7/\mu_0^2)^{1/4} \simeq 0.835k_B$ の数値的関係がある。これを用いて

$$U_0 = \frac{0.835g^2 k_{\rm B} J_{\rm c0}^{1/2}}{\zeta^{3/2} B^{1/4}}$$
(1.33)

となる。 また、 *L*に比べて超伝導体の厚さ*d*が小さい場合、 磁束 バンドルの体積は $V = R^2 d$ となり、 このときのピンポテンシャルは (1.21)式、 (1.23)式、 (1.28)式から最終的に

$$U_0 = \frac{1}{2} \cdot \left(\frac{2}{\sqrt{3}}\right)^{\frac{3}{4}} \cdot \phi_0^{\frac{2}{3}} \cdot \frac{g^2 J_{c0} d}{\zeta B^{\frac{1}{2}}}$$
(1.34)

となり、

$$U_0 = \frac{4.23g^2k_{\rm B}J_{\rm c0}d}{\zeta B^{1/2}} \tag{1.35}$$

で与えられる。

なお、本研究で評価する試料はバルク体であるため、超伝導体の 厚さdはLに比べて十分に大きい。そのため、 U_0 の値は(1.33)式か ら評価した。

1.3.4 磁束クリープ・フローモデル

正弦波的な washboard ポテンシャルを仮定した磁束クリープモデ ルによると、ピン・ポテンシャル U_0 と磁束クリープの影響がない仮想 的な臨界電流密度 J_{c0} が与えられれば、磁束クリープによる電界 E_{cr} は

$$E_{\rm cr} = Ba_{\rm f}\nu_0 \exp\left[-\frac{U(j)}{k_{\rm B}T}\right] \left[1 - \exp\left(-\frac{\pi U_0 j}{k_{\rm B}T}\right)\right]; \quad j \le 1$$
(1.36)

$$= Ba_{\rm f}\nu_0 \left[1 - \exp\left(-\frac{\pi U_0}{k_{\rm B}T}\right) \right]; \qquad j > 1$$

である。 ここで $j = J/J_{\rm c0}$ である。 活性化エネルギー U は (1.11) 式

で表わされる。

また、磁束フローによる電界 Eff は

で与えられる。 Bardeen-Stephan モデルを用いると、 常伝導抵抗率 $\rho_{\rm n}$ の温度依存性を $\rho_{\rm n} = (T/T_{\rm c})\rho_{\rm n}(T_{\rm c})$ として、 $\rho_{\rm f} = (B/B_{\rm c2})\rho_{\rm n}$ と表される。

磁束クリープと磁束フローによる電界 E' は簡単に

$$E' = (E_{\rm cr}^2 + E_{\rm ff}^2)^{1/2} \tag{1.38}$$

と近似できる。 ここで、 j < 1のときは磁東クリープしか起こらず $E = E_{cr}$ となる。また $j \gg 1$ のときは E_{ff} が E_{cr} よりかなり大きいた めに $E \cong E_{ff}$ となる。

これから電界の強さEの値を求めるためには仮想的な臨界電流密度 J_{c0} を与える必要がある。仮想的な臨界電流密度 J_{c0} は、経験的に

$$J_{\rm c0} = A \left(1 - \frac{T}{T_{\rm c}} \right)^m B^{\gamma - 1} \left(1 - \frac{B}{B_{\rm c2}} \right)^{\delta}$$
(1.39)

と仮定できる。ここで、A、m、 γ 、 δ はピンニングパラメーター であり、それぞれ磁束ピンニングの強さ、 温度依存性、 磁界依存 性、 高磁界依存性を示す。また超伝導体内部の不均一性を考慮して、 (1.39) 式のピンニングパラメータ A が次式のような対数正規分布を していると仮定する。

$$f(A) = K \exp\left[\frac{(\log A - \log A_{\rm m})^2}{2\sigma^2}\right]$$
(1.40)

ここで $A_{\rm m}$ はAの最頻値、Kは規格化条件により決定される定数、 σ^2 はAの分布幅を表すパラメータである。このときの電界は

$$E(j) = \int_0^\infty E' f(A) \mathrm{d}A \tag{1.41}$$

で与えられる。 したがってパラメータを与える事により *E*-*J* 曲線を 求める事ができる。

1.4 不可逆磁界

第2種超伝導体は、ピンニング機構により上部臨界磁界 B_{c2} まで超 伝導状態を維持し、臨界電流密度 J_c を持つと考えられる。しかし実 際には外部磁界が B_{c2} に達する前にピンニングが有効ではなくなり、 $J_c = 0$ となる。これは、ピンニング力がまだ弱く、高温になるにつれ て磁束クリープの影響が大きくなり、僅かな電流に対しても磁束線 がピンニングセンターから外れ、定常的な電界を発生させるためで ある。この $J_c = 0$ となる磁界のことを不可逆磁界 B_i と呼ぶ。外部磁 界が B_i より低磁界である場合、磁化曲線はヒステリシスを示し、外 部磁界の増減に対し不可逆となる。また、外部磁界が B_i より高磁界 である場合、超伝導体は磁気的なヒステリシスを示さず、磁化曲線 は可逆となる。従って、工学的な上限としては、上部臨界磁界 B_{rmc2} ではなく、 $J_c = 0$ となる不可逆磁界 B_i を材料特性とするのが一般的 である。ただし、不可逆磁界 B_i は上部臨界磁界 B_{c2} に依存すること から、高磁界下での臨界電流密度特性向上には、この上部臨界磁界 B_{c2} の向上が必要である。

図1.7にあるような、B-T 平面上における不可逆領域と可逆領域の 境目となる曲線を不可逆曲線という。不可逆曲線はピンニングが強 くなるにつれて、高温側へと遷移することが知られている。即ち、不 可逆曲線はピンニングの強さに依存する。この傾向は高温超伝導体 の場合においてより顕著となる。

不可逆曲線の理論値は磁束クリープ・フローモデルから与えられる。不可逆磁界は $E = E_c$ の電界基準によって決定した J_c の値がゼ

ロとなるときの磁界と定義されるので、(1.6)式の第2項を無視し、 $J = J_c = 0$ の極限では $U = U_0$ なので

$$U_0 = k_{\rm B} T \log \left(\frac{B_{\rm i} a_{\rm f} \nu_0}{E_{\rm c}}\right) \tag{1.42}$$

となり、不可逆磁界の理論値を得る。

図 1.7: 磁束密度-温度平面上の不可逆曲線

1.5 MgB₂

MgB₂は2001年に発見された金属系超伝導体である。MgB₂の臨界 温度は40 K程度と金属系超伝導体では最も高い。そのため冷凍機や 液体水素を冷媒として使用することができる。また、金属系超伝導 体であるため展性に優れており、線材加工が容易である。これによ り製作に必要なコストを低く抑えることができる。さらに、MgB₂の 構成元素である MgとBは自然界に豊富に存在しており、入手が非常 に容易である。また、銅酸化物高温超伝導体のような大きな異方性 や結晶粒界面の弱結合といった問題を持たない。ゆえにMgB₂の工 学応用には期待が寄せられており、研究が盛んに行われている。しかしながら、MgB₂線材の臨界電流密度 J_cは未だ低く、更なる改善が必要とされている。

MgB2の結晶構造を図 1.8 に示す。MgB2の結晶構造は二次元最密構造をもつ Mg原子層と、いわゆる蜂の巣構造 (ハニカム構造)を有している B 原子層が交互に重なった、六方晶系の層状構造となっている。

図 1.8: MgB₂の結晶構造

 MgB_2 はその作製方法によって特性が大きく変わることが知られて いる。 MgB_2 線材の作製方法としては、紡糸法^[5]や拡散法^[6]などが 存在するが、現在最も一般的な製法となっているのは、PIT(Powder In Tube)法と呼ばれる製法である。これは金属管の中に粉末を詰め て線材加工することによって物質を線材化する手法である。PIT 法 は使用する出発物質によって大きく2種類に分けられる。1つは Mg粉末と B 粉末、もしくはそれぞれの化合物を金属管に詰めて線材加 工し、熱処理して MgB_2 を作製する *in-situ*法であり、もう1つは既 に反応させた MgB_2 粉末を金属管に詰めて線材加工し、熱処理して MgB_2 を作製する *ex-situ*法である。これらの製法によって作製され た試料の臨界電流密度特性を比較した場合、一般に *in-situ*法で作製 されたものの方が優れている。そのため、*in-situ*法の方が主流な製 法となっている。

現在、PIT 法による MgB_2 線材の臨界電流密度は未だ低い。この 原因として MgB_2 中の空隙や MgO 層等の酸化物層により引き起こさ れる電気伝導度の割合、即ちコネクティビティKの低下が挙げられ る。^[7] コネクティビティKは、試料の密度を理論密度 (MgB_2 の場合 は2.62 g/cm³)で割った値で定義される充填率 Pに依存する。^[8] 従っ て、特性を向上させていくためには酸化物層の生成を抑えることと 充填率を向上させることが必要となる。しかしながら、一般的に *in-situ*法で作製した試料の充填率は低い。これを補うために、*in-situ*法 線材にホットプレスを行い内部の空隙を減少させたり、^[9] 高密度の MgB_2 試料が得られる拡散法と組み合わせたりする^[10] などの手法が 提案されている。他にも密閉した金属管内で MgとBを反応させる PICT(Powder In Closed Tube)法が考案されており、^[11] これは再現 性が高いことと臨界電流密度特性が良いことが特徴である。

*in-situ*法線材の場合は充填率が低くなるのに対し、*ex-situ*法の場合は充填率が高い試料が得られる傾向にある。従って、臨界電流密度の改善のために充填率の向上を狙う場合、*ex-situ*法が適している。しかしながら、現在の*ex-situ*法線材の臨界電流密度特性は*in-situ*法線材のものより低い。これは*ex-situ*法線材のコネクティビティが、高い充填率のわりに低いためだと考えられている。そのため、コネクティビティを改善することで優れた臨界電流密度を得られることが期待されている。なお、*in-situ*法と*ex-situ*法のいずれにおいても、熱処理により特性が向上し、その焼成時間や温度などの違いで臨界電流密度や磁界依存性が大きく変化することが知られている。これは生成される MgB2の粒径やその分布、充填率及びコネクティビティの違いが影響していると考えられている。

特性を向上させるための他の手段としては、結晶粒界によるピン ニング力を向上させることが挙げられる。これにはC添加を行うこ と、^[12] そして低温焼成等による粒子の微細化^[13] などが有効である ことが経験的にわかっている。

1.6 フラックスジャンプ

第2種超伝導体の磁化過程において、磁化の急激な減少が生じるこ とがある。これは試料内に磁束線が急激に侵入したためであり、こ の磁気的な不安定現象をフラックスジャンプという。断熱状態にあ る、外部磁界が印加されている超伝導体を例としてこの現象を考え る。何らかの要因により発熱 ΔQ が発生したとき、熱は試料の周囲 に存在する冷媒に吸収されるが、超伝導体の熱伝導度が小さい場合、 超伝導体内部で温度上昇 ΔT が引き起こされる。温度上昇 ΔT が発 生すると、それに伴って臨界電流密度 J_c の減少が発生する。臨界電 流密度 J_c が減少すると、試料内の磁束分布が変化し、更なる磁束線 の侵入がもたらされる。その結果新たな発熱 $\Delta T'$ が発生し、これま での過程を再度繰り返す。これらのプロセスが正のフィードバック となると、臨界電流密度 J_c の急激な減少が発生し、フラックスジャ ンプが起こる。一連のプロセスは極めて急速に進展するため、冷媒 による冷却効果の影響が薄い。そのため、超伝導体が断熱状態にあ るという前提条件が満たされる。

厚さ2dの超伝導体平板において、フラックスジャンプが発生しない条件は次のようになる。^[14]

$$\frac{\mu_0 J_{\rm co}^2 d^2}{\gamma_{\rm d} C (T_{\rm c} - T_{\rm o})} < 3 \tag{1.43}$$

ただし、 T_{o} は超伝導体の初期温度、 J_{co} は温度が T_{o} のときの J_{c} 、 γ_{d} は超伝導体の密度、Cは比熱である。この式より超伝導体の厚さ2dは

$$d_{\rm c} \equiv \frac{2}{J_{\rm co}} \sqrt{\frac{3\gamma_{\rm d} C(T_{\rm c} - T_{\rm o})}{\mu_0}} \tag{1.44}$$

として定義される臨界厚み*d*_cより小さければ良い。なお、(1.43)式 を見るとわかるように、フラックスジャンプは*J*_cが高くなるほど発 生しやすくなる。また、極低温下においては超伝導体の比熱*C*が小 さくなるため、この場合もフラックスジャンプが起きやすくなる。そ のため、フラックスジャンプは*J*_cが高くなり、*C*が小さくなる低温・ 低磁界において引き起こされやすい。

1.7 本研究の目的

1.5節において述べたように、MgB₂線材において、臨界電流密度 特性の向上にはコネクティビティが重要であること、コネクティビ ティを上げるには充填率を改善する必要があることがわかっている。 しかし、*in-situ*法MgB₂バルクの充填率の改善は現在滞っている。そ のため一般に*in-situ*法MgB₂バルクより高い充填率を持つ*ex-situ*法 MgB₂バルクが高J_cを達成することを期待されている。

そこで本研究では、焼成時間を調節して充填率を変化させた ex-situ 法 MgB₂ バルクの磁東ピンニング特性に対して磁東クリープ・フロー モデルを用いた解析を行い、各試料の解析結果を比較した。そして 比較した結果より、焼成時間の調節が磁束ピンニング特性にどのよ うな影響を及ぼすかについて議論を行った。

第2章 実験

2.1 試料

本研究で評価した試料は東京大学で作製された MgB₂ バルク体で ある。MgB₂ バルクは *in-situ* 法によって合成された自製 MgB₂ 粉末 を原料とした高温焼成 *ex-situ* 法により作製した。具体的には、自製 の MgB₂ 粉末を SUS 管に封入し、一軸プレスによって両端を封じる と共にテープ状に成形後、石英管に真空封入し、900°Cにおいて一定 時間熱処理を行った。その後、SUS 管から試料を取り出し MgB₂ バ ルク体を切り出した。なお、自製 MgB₂ 粉末は Mg と B の混合粉末を SUS 管に封入し、石英管に真空封入後、900°C、2 h の熱処理によっ て生成した MgB₂ バルクを、WCメディア、即ち炭化タングステンの ミルを用いた遊星式ボールミルにより粉砕することで作製した。ま た、SUS 管は作製時にかかる圧力に耐えられる、機械特性に優れた SUS316を用いた。試料諸元を表 2.1 に示す。また、各試料のサイズ を表 2.2 に示す。MgB₂ 粒子間のコネクティビティは次式の Rowell の 解析^[7] を用いて評価した。

$$K = \frac{\rho_{\text{crystal}}(300 \text{ K}) - \rho_{\text{crystal}}(40 \text{ K})}{\rho(300 \text{ K}) - \rho(40 \text{ K})}$$
(2.1)

ここで $\rho_{crystal}(T)$ はコネクティビティが1である理想的なMgB₂結晶 粒内での電気抵抗率であり、 $\rho(300 \text{ K})$ は試料の室温での電気抵抗率、 $\rho(40 \text{ K})$ は試料の臨界温度 T_c 直上での電気抵抗率である。ただし、 $\rho_{crystal}(300 \text{ K}) - \rho_{crystal}(40 \text{ K}) = 6.32 \times 10^{-2} [\mu\Omega\text{m}]$ とした。^[8]

高温焼成が多結晶体の密度、即ち充填率を上昇させることは広く 知られている。高温焼成を行うと粉末粒子間の界面拡散反応が進行 し、空隙が減少する(図2.1(b))。さらに反応が進行すると、空隙が消

表 2.1: 試料の諸元

試料	焼成条件	充填率 P	コネクティビティ K	$T_{\rm c} [{\rm K}]$
3 h(No2)	900°C, 3 h	0.64	0.015	37.9
12 h(No4)	900°C, 12 h	0.68	0.159	37.2
48 h(No6)	900°C, 48 h	0.71	0.238	37.2
150 h(No8)	900°C, 150 h	0.69	0.281	37.2

表 2.2: 試料サイズ

試料	試料サイズ [mm]
3 h(No2)	$0.99 \times 0.95 \times 0.94$
12 h(No4)	$1.68 \times 1.65 \times 0.52$
48 h(No6)	$1.29 \times 0.83 \times 0.58$
150 h(No8)	$1.44 \times 1.22 \times 0.54$

滅し、結晶粒が成長する(図2.1(c))。この一連の反応により充填率が 上昇する。今回の試料においては、焼成時間を調節することで充填 率を変化させている。なお、長時間焼成を続けると粒径が増大して ピンニングセンターの密度が下がり、結果として磁束ピンニング特 性が劣化する。従って、焼成によって特性の改善を図る際は、試料 に対する最適な焼成時間を調査する必要がある。

図 2.1: 高温焼成による結晶粒の成長過程

2.2 実験方法

本実験では MgB₂の臨界電流密度 特性を測定するために、SQUID 磁力計 (Superconducting Quantum Interference Device)の MPMS-7(Magnetic Property Measurement System)を用いて、試料の直流 磁化を測定した。

2.3 直流磁化法による J_cの評価

直流磁化測定では、ある一定の温度下で外部磁界を-1 T印加し、 0 Tから7 Tまで増磁する。そして7 Tから0 Tまで減磁して、直 流磁化を測定することにより、磁化ヒステリシス曲線を得る。ある 磁界におけるヒステリシスの幅 Δ*M* が臨界電流密度に比例する事か ら、このヒステリシス曲線から測定した温度における臨界電流密度 の外部磁界依存性、即ち *J*_c-*B* 特性を求めることができる。

ここで長さl、幅w、厚さdである直方体の超伝導体試料に対して 厚さ方向に磁界を加えた場合について考える。試料の中心を原点と して、試料の幅方向をx軸、長さ方向をy軸、厚さ方向をz軸とす る。4方向から試料へ磁束が侵入し、これを遮蔽する電流は、臨界電 流密度が等方的ならば、Bean-London モデル^[15]を仮定すると電流は 試料の端から一定の距離のところを流れるので、電流のパターンは 図 2.2 のように環状電流となる。中心から $x \sim x + dx$ の部分に流れ る微小電流を dI_c とすると、 $dI_c = J_c dx dz$ である。また環状電流が 作る面積Sは

$$S = 2x(2x + l - w)$$
(2.2)

であるので、この微小電流により発生する磁気モーメントは

$$\mathrm{d}m = J_{\mathrm{c}}S\mathrm{d}x\mathrm{d}z \tag{2.3}$$

と与えられる。従って、試料全体の磁気モーメントは

$$m = \int_{-d/2}^{d/2} \mathrm{d}z \int_{0}^{w/2} 2J_{\mathrm{c}}x(2x+l-w)\mathrm{d}x$$
(2.4)

図 2.2: 4 方向から磁束線が侵入した場合の流れ方と電流が流れる微小幅 dxの帯 に囲まれた領域

となり、これを計算すると

$$m = \frac{(3l - w)w^2 dJ_{\rm c}}{12} \tag{2.5}$$

となる。この電流による磁化は磁気モーメントmを超伝導体の体積で 割ったものとなり、磁化のヒステリシス幅はその2倍となる。よって

$$\Delta M = \frac{(3l-w)wJ_{\rm c}}{6l} \tag{2.6}$$

となり、臨界電流密度は

$$J_{\rm c} = \frac{6l}{w(3l-w)} \Delta M \tag{2.7}$$

から評価される。

ただし、SQUID 磁力計における磁気モーメントの測定値の単位は [emu] であるため、これをSI単位系に換算するとき以下の式を用いた。

$$\Delta m[\mathbf{A} \cdot \mathbf{m}^2] = \Delta m[\mathbf{emu}] \times 10^{-3}$$
(2.8)

第3章 結果及び検討

3.1 *J*_c-*B*特性

SQUID 磁力計による直流磁化法から得られた各試料の5K, 10K, 20K, 25Kにおける J_c -B特性を図 3.1に示す。また、各試料の J_c -B特性をそれぞれの温度で比較したものを図 3.2に示す。

図3.1を見ると、3h以外の試料については異なる温度における0T での J_c の差異は小さいが、48hの高磁界領域の J_c が一番高く、12h と150hが同様な特性となっている。3hについては、 J_c は低磁界領 域においても磁界の増加後共に大きく減少し、1T近傍で磁界依存性 は緩やかになる。これは、酸化物超伝導体でよく知られた、弱結合 による J_c の低下と同様に、3hという短い熱処理のためにMgB₂結 晶粒間の結合が弱く、この部分の J_c 特性によるものと考えられる。

一方で、図3.2に注目すると、3h以外の試料の*J*_c-*B*特性が非常に高いことがわかる。これは長時間の高温焼成によって充填率*P*とコネクティビティ*K*が上昇し、有効な電流パスが増加してピン力濃度が向上したためだと考えられる。12 h, 48 h, 150 hの試料間の*J*_cの差は小さい。特に、12 h と 150 hの*J*_c-*B*特性はほとんど変化が認められない。磁界依存性について注目すると、フラックスジャンプによる*J*_cの乱れはあるもの、48 hの磁界依存性が他の試料と比較して優れていることがわかる。48 hの磁界依存性が他の試料より良いのは、不可逆磁界*B*_iが高いためである。

図 3.1: 各試料の J_c-B 特性

図 3.2: 各温度における J_c-B 特性

3.2 不可逆磁界 *B*_iの充填率依存性

図 3.3 に、20 K における不可逆磁界 B_i の充填率 $P \sim O$ 依存性を示 す。ただし、各試料の B_i は $J_c = 1 \times 10^6$ A/m² となる B の値で決 定した。図 3.3 において、 B_i は P の増加に伴って概ね上昇しており、 充填率が一番高い 48 h の試料の B_i が一番大きい。従って、 B_i と P の間には正の相関関係があるといえる。故に、高磁界領域の J_c 特性 を向上させるためには P の改善が重要であると考えられ、*in-situ* 法 MgB₂ バルクの場合と定性的に一致した結果となった。^[16]

図 3.3: 20 K における B_iの充填率依存性

3.3 ピンカ密度のスケール則

上部臨界磁界付近を除いて、ピン力密度は次のようなスケール則 で表されることが知られている。^[2]

$$F_{\rm p} \propto b^{\gamma} (1-b)^{\delta} \tag{3.1}$$

ただしbは規格化磁界 $b = B/B_{c2}$ であり、 γ, δ はパラメータである。 これをピン力密度のスケール則という。MgB₂の場合は不可逆磁界の 影響を考慮する必要があるため、 $b = B/B_i$ とする。また、高温生成 した MgB₂バルクにおいては経験的に次式

$$F_{\rm p} \propto b^{1/2} (1-b)^2$$
 (3.2)

が成り立つ。^[17]

なお、不可逆磁界 B_i については、xを適当に調整して $(J_c B^{1-x})^{1/2}$ -B 特性が直線になるようにし、これがゼロとなるBの値から求めた。即 ち、Kramer のモデル^[2]に似た次のような特性

$$(J_{\rm c}B^{1-x})^{1/2} \propto \left(1 - \frac{B}{B_{\rm i}}\right)$$
 (3.3)

を仮定し、その結果より B_i の値を外挿した。x = 0.4とした場合の 各試料の $(J_c B^{1-x})^{1/2}$ -B特性を図3.4に示す。

図 3.5 に各試料のピン力密度のスケール則を示す。また、図 3.5 中 の赤の実線は (3.2) 式の関係を表す。図 3.5 を見ると、3 h 及び 48 h においては温度によってピークのずれが認められるものの、12 h と 150 h の全温度領域と 48 h の5 K, 20 K においては (3.2) 式と同様な 磁界依存性があることがわかる。高磁界側では (3.2) 式とのずれが見 られるが、1.2 節で述べたように MgB₂の主たるピンニングセンター は結晶粒界であると考えられている。しかし、これによるピンニン グは非超伝導相粒子等のピンニングに比べると弱い特性となる。従っ て、 T_c により近い領域ではピンニング力が弱いために磁束クリープ の影響を受け、そのため高磁界側での F_p が低くなっていると考えら れる。即ち、ex-situ法 MgB₂ バルクのピンニング力は未だ弱く、改 善の必要があるということである。また、3hの高温領域にフィット するように (3.1) 式のパラメータを変化させたところ、 $\gamma = 0.6, \delta = 2$ となった。その関係を図 3.5(a) の黒の実線に示す。

次に、48 hにおいて (3.2) 式のスケール則と一致しない原因につい て考察する。(3.2) 式のスケール則においては、b = 0.2の位置にお いてピン力密度 F_p が最大値 F_{pmax} をとる。しかし図 3.5(b) において は、10 K, 25 Kにおける F_p のピークがそれぞれずれており、10 Kの 場合は低磁界側、25 Kの場合は高磁界側へと移動している。この原 因としてまず考えられるのは、温度の増減によるピンニング機構の 変化とそれに伴う磁束ピンニング特性の変化である。しかし温度に よってピンニング機構が変化しているならば、5 Kにおいてもピーク がずれているべきである。ここで図 3.6 に示されている、48 hのピン 力密度 F_p の規格化磁界 $b = B/B_i$ に対する依存性に注目する。図 3.6 のグラフの概形から、フラックスジャンプによる F_p の乱れがなかっ たと仮定すると、10 K, 25 Kにおける F_p のピークの位置はb = 0.2の近傍になると類推される。従って、48 hにおけるピークのずれの 原因はフラックスジャンプであると考えられ、48 hにおいても (3.2) 式と同様な磁界依存性がある。

図3.5(a)においては、温度の上昇とともにピン力密度の最大値*F*pmax が高磁界側に移動している。従って、48hの場合に述べたように、温 度の低下とともにピンニング機構が変化している可能性がある。こ こで図3.7に示してある*B*i-*T*特性に注目すると、3hの試料におい て、低温領域での*B*iの増加率が他の試料と比較して大きいことがわ かる。この*B*iの増加が高磁界領域での臨界電流密度*J*cの増加に寄与 していると考えられる。また、3hのピン力密度の最大値*F*pmax と不 可逆磁界*B*iの関係、即ち*F*pmaxの温度依存性を図3.8に示す。図3.8 中の実線は高温度領域の依存性であり、*F*pmax が*B*iのおよそ2乗に 比例していることを示している。しかし低温領域では*F*pmax の*B*iに 対する依存性は小さくなっている。即ち、*F*pmax と*B*iの温度依存性 が異なることを示している。*F*pmax が温度によって移動しているとい うことは、低磁界側において何らかの新たなピンニング機構の寄与 が発生していることが考えられる。しかし、新たなピンニング機構 の寄与が発生しているというならば、 F_{pmax} も温度の低下と共に増加 していなければ辻褄が合わない。実際には、図 3.8を見るとわかるよ うに、 F_{pmax} の増加は頭打ちの傾向を示している。従って、ピークの ずれの原因は他に求める必要がある。他の原因として考えられるの は、不可逆磁界 B_i が低温において特に増加したということである。 MgB₂は2つのエネルギーギャップを持つことが知られている。^[18] そ のため、上部臨界磁界 B_{c2} は特異な温度依存性を示し、これが低温 での B_i の増加を引き起こす。このため、 F_{pmax} と B_i が異なる温度依 存性を持つためにピークのずれが発生し、1つのスケール則のみで記 述できないのだと推察される。 F_{pmax} と B_i 、及び B_{c2} の関係を明らか にするには、 B_{c2} の低温領域での詳細な測定が必要である。

MgB₂のマルチギャップがピークのずれが原因ならば、程度の差は あれ、他の試料についても同様の現象が起こっていると考えるべき である。しかし実際には図 3.5 において 3 h 以外でピークのずれが認 められない。その原因としては、充填率及びコネクティビティの改 善による不可逆磁界の向上が考えられる。全温度領域で *B*_iが著しく 上昇したために、マルチギャップによる *B*_i への影響が見られないの だと推察される。他の原因としては、(3.3) 式における、特に低温領 域での *B*_i の過小評価が考えられる。

図 3.5: 各試料におけるピン力密度のスケール則

図 3.6:48 hの $F_{\rm p}$ の規格化磁界 $b = B/B_{\rm i}$ に対する依存性

図 3.8:3hのピン力密度の最大値 F_{pmax} と不可逆磁界 B_{i} の関係

3.4 磁束クリープ・フローモデルによる理論値との比較

得られた実験結果に対して、磁束クリープ・フローモデルによる解 析を行った。ピンニングパラメータの値は、3.3節の結果を考慮して、 実験値と理論値がフィットするように与えた。また、MgB₂は作製方 法により、結晶にひずみが加わり、*B*_{c2}も変化している可能性がある ので、今回の解析においては*B*_{c2}もパラメータとして扱っている。

図3.9に各試料の実験結果と理論値の比較を示す。また、表3.1に解析によって得られた各試料におけるピンニングパラメータの値を示す。なお、3hのピンニングパラメータについては3.3節の結果を考慮して、低温領域と高温領域でそれぞれ異なるピンニングパラメータを与えた。図3.9より、実験値と理論値が概ね一致していることがわかる。*B*_{c2}(0 K)をパラメータとして扱っているため、各試料間の ピンニングパラメータの厳密な比較は困難であるが、大まかな傾向 はそれぞれのピンニングパラメータから見て取ることができた。

A_mの値について、3hとそれ以外の試料で比較すると、3h以外の 試料では約一桁大きい値になっている。これは3.1節で述べたように 長時間の焼成で有効な電流パスが増加したためだと考えられる。他 の3つの試料については、48hのA_mが若干低く、12hと150hにつ いてはほとんど差は見られなかった。コネクティビティKが高いほ ど有効な電流パスが増え、磁束ピンニング特性が改善されることを 考えると、最もコネクティビティが高い150hのA_mが他の試料より 優れているべきである。しかし実際には3つの内で最もコネクティビ ティが低い12hのA_mが最大となっている。そこで、コネクティビ ティの影響を考慮するため、次の式

$$A_{\rm K} = D \frac{A_{\rm m}}{K} \tag{3.4}$$

を計算した。ただしDは $A_{\rm K}$ の最大値が1となるように決定される 規格化定数である。計算結果を表3.2に示す。表3.2をみると、 $A_{\rm K}$ の 値は12hで最も高く、48hと150hでは同程度となっている。48h と150hで $A_{\rm K}$ が小さくなった原因としては、長時間の高温焼成によ る粒径の成長とそれに伴うピン濃度の低下が考えられる。

 $B_{c2}(0 \text{ K})$ の値に注目すると、48 hのみ $B_{c2}(0 \text{ K})$ が他の試料より高いことがわかる。ここで上部臨界磁界 B_{c2} とコヒーレンス長 ξ の関係は次のように表される。

$$B_{c2} = \frac{\phi_0}{2\pi\xi^2}$$
(3.5)

今回、試料に対してドープなどは行なっておらず、焼成時間を変更 したのみである。従って48hのB_{c2}(0K)が増加したのは、超伝導体 の配向がdirtyとなって電子の平均自由行程が短くなり、(1.1)式の関 係からコヒーレンス長が短くなったためだと考えられる。また、今 回評価した試料は、配向が無秩序なバルク体である。従って、上部 臨界磁界が結晶粒の適度に無秩序な配向のために充填率Pの影響を 受けたのではないかと推察される。故に、ex-situ法MgB₂バルクの 高磁界下での特性を向上させるためには充填率Pを改善することが 重要であると考えられる。充填率Pによる高磁界特性の向上を定量 的に評価し、それらの因果関係を調査するには、充填率P及びコネ クティビティKの低下による電流特性の制限を考慮したモデルを用 いる必要がある。

試料	A _m	σ^2	γ	m	g^2	$B_{\rm c2}~(0~{\rm K})~[{\rm T}]$
3 h (5–10 K)	2.0×10^8	1×10^{-2}	0.5	1.0	2.2	8.5
3 h (20–25 K)	2.0×10^8	1×10^{-2}	0.6	1.0	3.5	8.5
12 h	9.4×10^9	5×10^{-4}	0.5	1.0	3.0	8.8
48 h	7.8×10^9	1×10^{-3}	0.5	1.0	3.0	9.7
150 h	9.0×10^9	6×10^{-4}	0.5	1.0	3.0	8.9

表 3.1: ピンニングパラメータ

(c) 48 hの J_c-B 特性の実験値と理論値の比較
 (d) 150 hの J_c-B 特性の実験値と理論値の比較
 図 3.9: 各試料における J_c-B 特性の実験値と理論値の比較

表 3.2: 各試料におけるコネクティビティKを考慮したピン力密度の最頻値

試料	$A_{\rm m}$	K	$A_{\rm K}$
12 h	9.4×10^9	0.159	1.00
48 h	7.8×10^9	0.238	0.55
150 h	9.0×10^9	0.281	0.54

第4章 結論

4.1 結論

本実験では焼成時間を調節して充填率 P を変化させた ex-situ 法 MgB_2 バルク超伝導体の J_c -B 特性を測定・評価し、焼成時間の調節 による磁束ピンニング特性への影響を調査した。 J_c -B 特性を測定し た結果、12 h 以上の高温焼成で臨界電流密度特性が大きく改善され ていることがわかった。これはコネクティビティK が改善して電流 パスが増加し、磁束ピンニング特性が向上したためだと考えられる。しかし、12 h, 48 h, 150 h においてはコネクティビティK が増加し ても、 J_c -B 特性の大幅な改善は見られなかった。これは、長時間の 焼成によって粒径が大きくなり、ピン濃度が低下したためだと推察 される。

磁界依存性については充填率 Pが一番高い48hが最も優れており、 実際に B_{c2}(0 K)の値は48hが最も高かった。これは超伝導体の配向 が汚れていたために電子散乱が増えたためだと考えることができる。 48hでのみ電子散乱が増えたのは、MgB₂の結晶粒が持つ適度な結 晶粒のランダムな配向により、上部臨界磁界が充填率 Pに影響され たためだと推察される。従って、比較的低磁界領域の J_c-B特性向上 には、コネクティビティの改善によるピン濃度の増加が有効である が、更に高磁界領域での J_c特性向上には高充填率による高い上部臨 界磁界が有効である。

4.2 今後の課題

今回の磁束クリープ・フローモデルによる解析では、*B*_{c2}(0 K)を パラメータとして扱った。そのため、正確なピンニングパラメータ を得るために、Bc2のより精度の高い評価が必要である。

また今回の解析結果より、充填率*P*の改善が高磁界特性の向上に 寄与している可能性が示唆されたが、これらの関係の定量的な評価 を行うために、充填率*P*及びコネクティビティ*K*による特性の変化 を考慮したモデルを用いて解析することが望まれる。

謝辞

本研究を行なうにあたり、多大な御指導と御助力を賜りました 木内勝准教授に深く感謝いたします。また多大な御迷惑をお掛けし ながらも、実験や論文作成にあたって様々な御協力や御助言を頂い た小田部荘司教授、松下照男名誉教授に深く感謝いたします。そし て公私共々御世話になりました小田部・木内研究室の皆様に深く感 謝いたします。最後に、本研究に使用しました試料を提供していた だきました東京大学の山本明保助教及び関係者の皆様に深く感謝い たします。

参考文献

- [1] Y. Katsura, A. Yamamoto, I. Iwayama, S. Horii J. Shimoyama and K. Kishio: 低温工学 41 巻 11 号 p.497-p.504.
- [2] T. Matsushita, Flux Pinning in Superconductors, Springer, Berlin, 2007.
- [3] K. Yamafuji, T. Fujiyoshi, K. Toko, T, Matsushita: Physica C 159 (1989) 743.
- [4] T. Matsushita: Physica C **217** (1993) 461.
- [5] E. Ban, R. Sakaguchi, Y. Matsuoka, T. Goto, K. Watanabe, G. Nishijima: Physica C 426-431 (2005) 1249.
- [6] J. M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada and K. Kimura: Supercond. Sci. Technol. 21 (2008) 032001.
- [7] J. M. Rowell: Supercond. Sci. Technol. 16 (2003) R17.
- [8] A. Yamamoto, J. Shimoyama, K. Kishio, and T. Matsushita: Supercond. Sci. Technol. 20 (2007) 658.
- [9] Y. Yamada, M. Nakatsuka, K. Tachikawa and H. Kumakura: 低 温工学 40 巻 11 号 p.493-p.497.
- [10] I. Iwayama, S. Ueda, A. Yamamoto, Y. Katsura, J. Shimoyama,
 S. Horii, K. Kishio: Physica C 460-462 (2007) 581.
- [11] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio: Supercond. Sci. Technol. 17 (2004) 921.

- [12] S. X. Dou, S. Soltanian, J. Horvat, X. L. Wang, P.Monroe, S. H. Zhou, M. lonescu, H. K. Liu, M. Tomsic: Appl. Phys. Lett. 82 (2002) 3419.
- [13] A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, Y. Katsura,
 S. Horii, K. Kishio: 低温工学 40 巻 11 号 p.466-p.472.
- [14] 松下 照男 編: 超伝導応用の基礎,米田出版 (2004)
- [15] C. P. Bean: Phys. Rev. Lett. 8 (1962) 250; H. London: Phys. Lett. 6 (1963) 162.
- [16] T. Matsushita, M. Kiuchi, E. S. Otabe, A. Yamamoto, J. Shimoyama, K. Kishio: Physica C 470 (2010) 1406.
- [17] 姫木 携造: 超伝導 MgB₂ における磁東ピンニング特性 [九州工業 大学卒業論文 2007]
- [18] S. Tsuda, T. Yokota, T. Kiss, Y. Takano, K. Togano, H. Kitou,H. Ihara, and S. Shin: Phys. Rev. Lett. 87 (2001) 177006.